

 1

© 2017 AT&T Intellectual Property. All rights reserved.

Towards an Open, Disaggregated Network Operating System

 2

© 2017 AT&T Intellectual Property. All rights reserved.

Towards an Open, Disaggregated Network Operating System

Contents
1 Introduction .. 3

1.1 Abstract dNOS Components ... 5

1.2 Proposed dNOS Activities ... 5

2 Key Functional Components of dNOS ... 6

2.1 Applications ... 7

2.2 Shared Infrastructure and Data .. 8

2.3 Forwarding and Hardware Abstractions ... 9

3 High Level Software Architecture Overview ... 10

3.1 Base Operating System Layer ... 11

3.2 Control and Management Plane Layer ... 12

3.3 Data Plane Layer ... 14

4 Realization ... 15

 3

© 2017 AT&T Intellectual Property. All rights reserved.

1 Introduction

This white paper provides an overview of AT&T’s vision for an Open Architecture for a

Disaggregated Network Operating System (dNOS). Our goal is to start an industry discussion on

technical feasibility, build interest in participating in the formulation of technical detail, and

determine suitable vehicles (standards bodies, open source efforts, consortia, etc.) for common

specification and architectural realization.

The AT&T Global IP/MPLS network supports all of AT&T’s connectivity and application services

to consumer and business customers worldwide. This network is comprised of over 100,000

interconnected IP/MPLS routers. These routers have varying levels of network functionality

(access aggregation, service-edge, intercity core) and scale. A small number of OEM vendors

built generations of IP routers specially targeted at very large-scale, multi-service backbone ISP

carrier networks such as AT&T’s. These OEM routers were designed, developed and sold as

monolithic router platforms with vertically integrated proprietary hardware and software

components.

The barrier to entry to creating a Network Operating System has historically been high due to

the quantity and complexity of the functional requirements. This complexity extended to both

software and hardware. Several previous attempts have been made to create an open NOS,

with varying levels of success depending on the targeted use case. However, network vendors,

researchers, and developers have made major progress over the last few years.

Advances in software, such as Intel’s DPDK and the predominance of YANG models, and in

hardware, with silicon chips from vendors such as Broadcom that can meet service provider

routing “speeds and feeds” have fostered an ecosystem of networking applications of

unprecedented quality and accessibility.

In addition, the growth of merchant silicon forwarding hardware and their corresponding SDKs

have launched a hardware ecosystem to address the capability and throughput needs of even

the most demanding network appliance role.

Technologies such as the P4 language and interpreting silicon point to even more capable

devices soon. The combination of these technologies has created a robust ecosystem of

networking applications and building blocks that should be used to create an industry-standard

NOS.

The goal: accelerating network innovation.

Data traffic is surging and new customer networking applications (e.g., SD-WAN VPN, IoT

networking, and movement of applications into the Cloud) are taking off. A new approach is

needed for router platform development and procurement to enable:

 4

© 2017 AT&T Intellectual Property. All rights reserved.

 Faster introduction of technologies, designs, and features by means of a collaborative

ecosystem of hardware and software component vendors

 Flexibility in network design and service deployment via plug-n-play hardware and

software components that can cost-effectively scale up and down

 Unit-cost reduction through use of standard hardware and software technology

components with very large economies-of-scale wherever appropriate.

That’s how we’ll foster an ecosystem of network innovation. That ecosystem is only possible if

there is a common open platform on which multiple vendors, companies, organizations, and

individuals can build on, contribute to, and certify against. Creating an ecosystem of network

software and hardware requires a new level of operating system standardization.

Toward these ends, AT&T has embarked on a plan to create an architecture design and a

realization roadmap for a Disaggregated Network Operating System (dNOS) platform with the

following high-level design goals:

 Separation of the router’s “Network Operating System” (NOS) software from the

router’s underlying hardware (router chassis, routing controller, forwarding line-cards)

 Well-defined standard interfaces and Application Programming Interfaces (APIs) that

provide a framework within the base operating system, control and management plane,

and data planes, enabling

o Customization of each to accommodate size, power, functional and security

requirements of specific deployments

o Modular designs that allow the user to mix and match applications from

different private, commercial, and open source suppliers in a model-driven,

multi-vendor environment

 Well-defined standard interfaces/APIs that provide a clean separation of control-plane

from data plane, enabling

o A common control plane for multiple forwarding data-plane implementations

and technologies including merchant silicon, NPU, x86 CPU and hybrid models

o Independent scaling of control and data planes by means of dNOS

implementations that can run on CPUs contained inside a router hardware

platform or alternatively on external servers connected to a router platform, and

that can control single or multi-chassis systems, potentially in a geographically

distributed environment.

The goal of dNOS is to foster an ecosystem of application and hardware options from multiple

vendors. To achieve this vision, it’s critical that both hardware and software include

standardized interfaces that a community of developers can coalesce around. A single,

standardized NOS is the most efficient and effective means to this end. A single NOS allows for

qualification of a common, shared integration infrastructure and APIs to help developers rapidly

launch new applications. It allows for ecosystem developers to focus on value adding

 5

© 2017 AT&T Intellectual Property. All rights reserved.

applications rather than the basic building block components required in all network

infrastructure. It presents a common management and operational interface to network

operators and orchestration systems across all deployment models. Shared development on a

common NOS benefits from the network effects of a distributed development model, such as

seen in the Linux ecosystem in general. If widely adopted, it also provides a larger commercial

footprint and therefore more incentive for vendors to participate. One goal of the dNOS project

would be to encourage the community to coalesce around a single open NOS platform.

While bare metal deployment is a prime consideration of the dNOS architecture, the OS should

not be limited to that deployment model. dNOS control plane elements should support

operating on a range of general purpose CPU platforms in both bare metal and fully virtualized

deployment models.

Additionally, dNOS should support pure hardware based forwarding, pure software based

forwarding, or a mix of the two.

1.1 Abstract dNOS Components

The disaggregated Network Operating System (dNOS) consists of hardware and software

components.

At a high level, the software components include a base operating system, a control and

management plane, and data planes.

The hardware components typically include a general-purpose CPU to run the base operating

system, the control and management plane and any software data planes required for the use

case. This general-purpose CPU may be virtualized and so the software components should

support running in a virtual environment. The hardware components may also include a

dedicated hardware forwarding device such as a merchant silicon ASIC, NPU, FPGA, or similar.

The general-purpose CPU and the specialized forwarding device may be co-resident in the same

hardware or may be separated by a bus or network.

1.2 Proposed dNOS Activities

A first proof point of the viability of this vision – separation of the router hardware and

software – was recently demonstrated in a proof-of-concept, production field trial1. In the trial,

the same router NOS ran on different instances of 3rd-party router hardware (“white boxes”).

1
 http://about.att.com/story/white_box_collaboration.html

 6

© 2017 AT&T Intellectual Property. All rights reserved.

Further effort is required in the management plane, software integration, and data modeling of

the control and management plane. These are key parts of the overall solution. More work is

required on the integration of applications at both the control plane and the data plane.

Previous efforts may have failed because they were too incomplete to be valuable to a broad

ecosystem.

As a next-step, we envision an industry initiative that augments existing efforts toward open

architectures, such as OCP SAI and ONF P4, but broader in scope. This effort would focus

beyond hardware/software disaggregation and beyond cloud data-center networking features

to create and foster a routing software component supplier ecosystem to deliver innovative

network solutions that meet the large scale and fast-evolving feature requirements for

MAN/WAN networking (encompassing cell-site routers, metro Ethernet service and RAN

backhaul routers/switches, Internet and VPN service edge routers, carrier intra-POP

interconnect fabric, backbone core routers).

2 Key Functional Components of dNOS

The following is an abstract representation of the functional components in the system.

FIGURE 1 - DNOS FUNCTIONAL LAYERS AND COMPONENTS

 7

© 2017 AT&T Intellectual Property. All rights reserved.

2.1 Applications

Applications are any network feature on the router that has a control plane or management

plane component. dNOS contains a basic set of application classes that interact with their

counterparts in other network routers, as well as with ONAP-based management and control

systems, to establish and manage the operational states of the given router to affect its service

and routing/forwarding features. Not all applications may be categorized by the basic

classifications represented in Figure 1.

Routing protocol applications implement the network routing protocol stacks including:

 Transport layer routing protocols for intra- and inter-nodal path selection and traffic

engineering, i.e., IGP (OSPF, IS-IS), MPLS label-binding (LDP, SR), BGP-LU, RSVP-TE, BGP-

LS, PCEP.

 Service layer routing protocols for end-to-end service routing, i.e., Multi-protocol BGP,

BGP-Flow-Spec.

Routing protocol applications interface east/west with other network appliances, but can also

interface northbound with ONAP. They interface with their peers using their native protocol

definitions, such as with OSPF or BGP peering relationships. Routing protocols are typically

responsible for the network–wide routing topology. In this case, they collectively update a

common Routing Information Base (RIB), to be discussed in section 2.2, to determine the

authoritative topology view for the network appliance. However, they could also be used to

define inter-chassis routing topologies, in which case they interface with a chassis manager as

opposed to a shared RIB. The chassis manager is further discussed in section 3.2.

Features & Service Management applications maintain configuration control of the network-

wide and customer-specific features, for example:

 Access control and security: ACL-based filtering and rate control, encryption.

 Class-of-service: customer and backbone traffic management profiles.

Network Management applications support telemetry and diagnostic capabilities for the

platform as well as network-wide capacity, performance and fault management.

Platform Management applications collectively enable management of the physical hardware

of the router – hardware component detection, monitoring, diagnosis, as well as environmental

control (power, cooling, etc.). One required Platform Management application is the Baseboard

Management Controller (BMC) that interfaces to the dNOS device hardware.

The chassis management application is responsible for managing the lifecycle and state of local

and remote data planes. It is further responsible for selectively syncing state between control

and data planes and managing inter data plane connectivity. The chassis manager does not

assume a chassis or an environment with multiple distributed switches. In the case of a single

 8

© 2017 AT&T Intellectual Property. All rights reserved.

pizza box type switch, the chassis manager still functions as the interface between the control

plane and the single on-box data plane.

2.2 Shared Infrastructure and Data

A multi-vendor NOS must be able to share data between different vendors’ applications using a

common methodology and protocol. One key goal of dNOS is to create an open environment

that facilitates this sharing between applications. To do this, dNOS includes common

infrastructure components and shared data structures.

Basic network state information is stored in a set of common shared data structures.

These data structures include information about interface state, neighbor resolution tables,

forwarding information base (FIB) state, and other such items. Additionally, a routing

information base (RIB) aggregates route information from higher layer routing protocols and

determines optimal route for injection into the FIB. The RIB holds the transport- and/or service-

layer network reachability information created and maintained by the router based on the

routing information exchanges with other network elements (routers, route-reflectors, external

elements, etc.) and routing control systems (SDN route controllers). There are distinct RIB types

for different routing services (e.g., Internet vs. L3-VPN vs. EVPN, and unicast vs. multicast) and

addressing types (IPv4 vs. IPv6). Each router may have more than one RIB type depending on

the particular set of network functionality (e.g., P-router vs. PE routers) and services it supports.

Applications use a common methodology to update relevant basic network state shared data.

Further, application-specific data is stored within the applications themselves. For example, a

BGP application would select a best path from all learned paths and then communicate that

selection to the shared common RIB. However, the BGP application would be solely responsible

for storing the number of prefixes learned from a given peer as it is specific to the design, form,

and function of that specific application.

Applications can share this application-specific data amongst themselves using common data

sharing infrastructure provided by dNOS. This infrastructure should support a query

methodology to learn what data is available and where it is located. It should also support both

subscription and polling methodologies to get regular updates of the data. For example, the

BGP application could share the neighbor prefix count periodically with a gRPC application so

that an off-system management platform can calculate a route churn histogram for that

neighbor.

A common configuration and operation infrastructure is responsible for providing unified

configuration and operations interfaces for all of the applications. Some applications may exist

in the control plane only as interfaces to the common configuration and operations

 9

© 2017 AT&T Intellectual Property. All rights reserved.

infrastructure. For example, access control lists (ACLs) are filters applied to packets forwarded

through the data plane. ACLs have no little or no functional code in the system’s control and

management plane. ACL control plane implementation consists largely of code that interfaces

with the configuration and operation infrastructure and translates that configuration into data

structures which are applied to the data plane. But many control and management plane

applications will include control plane code, scripts, processes, etc. These applications will use

the common configuration and operations infrastructure through a standardized API shim layer

with the goal of minimal changes to existing applications.

All shared infrastructure data is defined by standardized data models expressed using a suitable

standard data structure and/or data-modeling language (e.g., YANG).

The data sharing infrastructure and the basic network state shared data structures enables

sharing of common data amongst different protocols (e.g., link state data accessible by classic

IGPs such as OSPF and ISIS and by BGP-LS which is used in SDN control applications), as well as

graceful evolution of protocol choices (e.g., using gRPC in place of SNMP to collect OAM data).

User, Orchestration, and Data Export interfaces provide a common infrastructure for

connecting applications and system infrastructure to external systems for management and

analysis. Northbound interfaces to ONAP management & control systems include

NetConf/YANG and gRPC, and to support both streaming and (legacy) polling mechanisms for

telemetry data collection.

2.3 Forwarding and Hardware Abstractions

dNOS includes a set of components to support multiple different forwarding layers. A

forwarding abstraction layer (FAL) is responsible for taking high-level network state input from

the shared infrastructure and data components and translating into vendor specific APIs for

various software and hardware forwarding options.

The FAL uses SDKs and drivers supplied by the ASIC vendors in the case of NPU ASIC forwarders;

and software supplied by combinations of NOS vendors, open-source communities (e.g., DPDK,

FD.io), and hardware (e.g., NIC) vendors in the case of software forwarders running on x86 CPU.

The goal of the FAL is to have ASIC supplier diversity and that multiple ASIC’s share a common

abstraction layer that is target independent.

The long-term goal is to have the FAL include an abstraction that supports fully programmable

hardware pipelines. This abstraction would be based on a formal network programming

language such as P4 or another similarly industry recognized standardized language.

 10

© 2017 AT&T Intellectual Property. All rights reserved.

3 High Level Software Architecture Overview

The software architecture of dNOS envisions three high level layers; the base operating system,

the control and management plane, and the data plane. The key functional components and

their interfaces are depicted in Figure 2.

FIGURE 2 - DNOS SOFTWARE ARCHITECTURAL OVERVIEW

Colors correspond to layers represented in Figure 1

 11

© 2017 AT&T Intellectual Property. All rights reserved.

3.1 Base Operating System Layer

The base operating system has two primary responsibilities;

 Basic function of the system including bootstrapping, device drivers, process

management, shell access, etc.

 Authoritative ownership of the basic network state information

Basic system functions are a prerequisite to any operating system. However, they shouldn’t be

the focus of the dNOS development community. An existing general purpose operating system

should be used to bootstrap dNOS development. Further, as dNOS matures, it should make

every effort to continue stay as closely aligned as possible with that general-purpose OS to

easily use ongoing development, fixes, and new features. The general-purpose OS should have

a well-defined and intuitive existing development process and developer tool chains supported

on multiple different hardware architectures. It should be based on open source.

For the purpose of this paper, the base operating system is assumed to be derived from Linux.

The base OS should be as closely aligned with one of the major Linux distributions to take

advantage of their existing efforts and ecosystems. This distribution is referred to as a parent

distribution. For Base Operating System Layer components, development from from the parent

distribution is primarily related to non-networking components such as file systems, hardware

drivers, shells, etc. However, the control and management plane should also be able to use

many network applications from the parent distribution as well. Customization of the base

operating system, outside the scope of the networking applications, should be discouraged if it

increases development burden. Some Base Operating System Layer customization is

unavoidable due to the need to mimic a network appliance operating model. For example, the

Base Operating system should be modified to support multiple simultaneous installations and

the ability to roll back to previous installs. However, the more customized the Base Operating

System is, the more difficult it is to integrate parent distribution features and fixes.

The Base Operating System should support multiple CPU architectures for system portability. At

a minimum, it must include support for Intel x86 and ARM. It must be modular, using one of the

major package formats (deb or rpm) to allow for easy customization of dNOS to meet the

unique requirements of different network devices. The base operating system should support

multiple simultaneously installed images using a live boot mechanism or similar. It must

support deployments in bare metal and virtualized environments. When installed in a bare

metal environment, it should support the ability to run virtual machines and/or containers

within the dNOS.

It is important the base operating system is the authoritative repository for basic network state

information. In a Linux environment, this means network state is stored in the Linux kernel data

 12

© 2017 AT&T Intellectual Property. All rights reserved.

structures. The netlink protocol is the primary method for populating those structures and acts

as the conduit between the base operating system and the control and management plane

applications. The intent behind this design decision is to be able to easily integrate existing

Linux applications without modification. Use of the native Linux network stack also enables a

seamless dev/ops environment allowing traditional sysadmin interfaces and scripts to operate

within the dNOS.

In this model, all network interfaces attached to the system are represented in the Linux kernel

whether or not they are physically attached to the device. One additional benefit to using the

native Linux data structures for basic network state data is to support mixed network interface

environments. One example of this might be combining Ethernet interfaces on a merchant

silicon switch chip with an LTE modem interface supported by the Linux kernel. This is especially

important if the goal is to integrate existing unmodified Linux applications that can use all

network interface types. These applications expect a set of standard APIs, such as sockets and

netlink. If these APIs don’t function across all interface types, then the application must be re-

written.

The base operating system must include support for Open Network Install Environment (ONIE)

to facilitate boot strapping on the most common merchant silicon platforms. It must support

booting in both legacy and Unified Extensible Firmware Interface (UEFI) environments.

3.2 Control and Management Plane Layer

The control and management plane is responsible for:

 Managing control plane network feature applications

 Providing the infrastructure that integrates applications into dNOS

 Exposing dNOS configuration, operation and management interfaces to external

orchestration systems and end users

 Communicating control plane and system state information to a chassis manager that is

responsible for managing the interface to a single local or multiple remote distributed

data planes

The control and management plane is primarily responsible for the operation of network

feature applications. Examples include a BGP daemon, an SNMP server, a TWAMP server, an

IPsec daemon, and a firewall configuration service.

These applications can be sourced from open source, commercial vendors or could be privately

built custom applications. As discussed in section 3.1 Base Operating System Layer, feature

applications can be unmodified native Linux applications due to the use of standard Linux APIs

in the base operating system.

 13

© 2017 AT&T Intellectual Property. All rights reserved.

The control and management plane includes infrastructure components that are responsible

for integrating applications into dNOS. These infrastructure components include a set of APIs

for integrating applications into the system, including their configuration and operational

interfaces, in addition to mechanisms for data sharing between applications. Communication

between applications and the control and management plane infrastructure is done through a

shared Inter-Process Communication (IPC) bus mechanism. Applications may also share their

data using this bus with other applications. The flat bus model for communicating shared data

is preferable to a modeled hierarchy as the intent is to allow any application to communicate

with any other application on the system.

Applications are the ultimate authority for their feature specific data. All configuration,

operation, and shared data for each application is modeled in YANG by the feature developer

and exposed to the infrastructure components.

Where appropriate, applications continue to use native Linux IPC mechanisms, infrastructure,

and shared data. This includes the traditional Linux netlink interface to query and update basic

network state information which resides in the Linux kernel. The intent is to be able to easily

integrate the existing ecosystem of Linux network applications with minimal or no modification.

Some network features may have no control and management plane function other than to

operate as a data store and information proxy with the data plane. One example would be a

firewall, where the control plane acts as a configuration and operation proxy to functional code

that resides in the data plane. In these cases, the application in the control and management

plane still needs to store configuration and translate operational mode data into a form that

can be used by the user interface components and other applications. The infrastructure

components in the control and management plane provide a framework on which to build

these types of applications. Information between applications and data planes are routed

through the chassis manager.

All dNOS configuration and operation information is exposed to network operators and external

orchestration and management systems through the user interface components. It is critical

that dNOS supports common external interfaces for all applications on the system.

A common Command Line Interface (CLI) that combines Linux ecosystem commands with a

more familiar network appliance style CLI means easier operation and less training for network

staff. Like a traditional network appliance, the CLI should support loading system configuration

from a single file to allow for existing operational workflows. It should support commit confirm,

configuration rollback, configuration diffs, etc. Additionally, the CLI interface must be scriptable

in multiple languages to support dev/ops environments. Where possible and allowed, through

the infrastructure components’ common Role Based Access Control (RBAC) system, the CLI

should allow for single line actions that combine network specific commands modeled in YANG

with Linux shell commands.

 14

© 2017 AT&T Intellectual Property. All rights reserved.

Common netconf and REST interfaces mean network operators have a single management

channel into the system. That single channel can be certified against upstream management

and orchestration systems without having to requalify for every new application.

The control and management plane should include a common RIB component. The RIB

maintains the traditional role and functions of a router RIB. It is responsible for selecting the

best path from a set of options learned from the higher layer routing protocols and distributing

that path to various components in the system. It does this through a route broker, who’s role

is to insure lossless, synchronized routing updates to the various route consumers. The RIB is

also responsible for routing policy implementation. The intent with dNOS is to standardize on a

single common RIB. This RIB interfaces with the base operating system through the traditional

Netlink interface. The interface with upper layer routing protocols is handled through a user

space messaging protocol. The adoption of the common RIB and the standardization of the

communications path between the RIB and the upper layer routing protocols is to encourage

multi-vendor protocol environments for OSPF, ISIS, BGP, etc.

The control and management plane includes a chassis manager responsible for synchronizing

state with the data planes. It accepts data from applications and the control and management

plane infrastructure across the shared IPC bus. It listens to netlink messages from the base

operating system in order to synchronize basic network state information. Finally, it receives

routing information from the route broker. This data is selectively transmitted to the

appropriate data planes using an IP based transport mechanism. The chassis manager must be

able to support basic virtual line card functions including removal and hot plug, multiple line

cards in a system, high availability, etc. The chassis manager must be able to support line cards

that are physically separated from the control and management plane even if they are

geographically dispersed.

The control and management plane must support highly available, redundant deployments.

3.3 Data Plane Layer

 The data plane layer is responsible for:

 Synchronizing state between the control and management plane and the data planes

 Providing a forwarding abstraction layer between the control and management plane and the

hardware/software data planes

 Providing general packet forwarding functions in hardware and software

 15

© 2017 AT&T Intellectual Property. All rights reserved.

A control plane may manage a single or multiple data planes. Those data planes may be co-resident on

the same hardware as the control plane, or they may be distributed across a network.

The data plane includes a chassis manager client which is responsible for synchronizing state with the

control and management plane. It then presents that data to a forwarding abstraction layer (FAL). That

FAL is responsible for translating from abstract network data representation into vendor specific APIs for

software and hardware forwarding data planes. This includes state local to the individual data plane(s)

such as interface state, FIB state, QoS and firewall configuration, etc.

The software forwarding pipeline is a vector based pipeline that chains together packet forwarding

functions using a standardized API. This API forms the basis of the ecosystem for data plane network

application developers. These applications could be as simple as a high speed longest prefix match

lookup algorithm or as complex as a layer 7 firewall. They can be sourced from commercial vendors,

open source organizations, or can be privately developed. The software forwarding pipeline should be a

feature complete fully stateful pipeline capable of firewall, NAT, DPI and analytics export functions. It

should be capable of terminating various tunnel encapsulation types including encrypted tunnels such as

IPsec.

While a pure software pipeline is good at certain tasks (namely high touch, low speed, high memory

footprint applications), hardware forwarding is needed for many use cases, especially those requiring

high throughput, high port density, and low touch forwarding. The FAL in the data plane acts as a

translation element between multiple vendors’ merchant silicon SDKs and the control plane’s data

representation to enable hardware abstraction. The goal of the FAL is to be able to provide an

abstraction layer by which dNOS can use multiple vendors’ silicon forwarding once a “driver” has been

written.

The ultimate dNOS deployment can use both software and hardware forwarding simultaneously. This

allows, for example, high speed switching on a merchant silicon device with punt path offload to a

software data plane for high speed IPsec termination. Further, the merchant silicon switch and the

software forwarding planes need not be co-resident on the same physical hardware or have a 1 to 1

relationship.

4 Realization
AT&T’s plan to realize the disaggregated Network Operating System will be based on two

mutually supporting approaches: initiating and fostering the industry-wide development of a

standardized dNOS platform and adopting processes that favor that platform.

A fundamental goal of this effort is to motivate developers to create value-added applications

and innovative solutions for this platform. Such an approach was heretofore nearly impossible

with closed and vertically integrated router solutions.

The architecture standardization initiative will seek to define and develop standards for the

following key aspects of dNOS architecture:

o Functional definition of key components in each NOS layer

 16

© 2017 AT&T Intellectual Property. All rights reserved.

o Common and essential set of northbound and southbound interfaces/APIs for each

NOS layer

o Data-models for the common RIB, applications and common infrastructure layers

We call on leading hardware & software vendors to participate in the architecture

standardization. The process will also include, where appropriate, existing industry bodies and

standard forums (e.g., Linux Foundation, OCP, OpenConfig, P4, IETF).

In parallel, as the effort matures, AT&T will evolve its router-platform sourcing process to give

preference to dNOS vendors whose products (or committed product-roadmap) are based on

using this platform.

 17

© 2017 AT&T Intellectual Property. All rights reserved.

This whitepaper presents information about AT&T’s vision for an Open Architecture for a Disaggregated

Network Operating System. This information is subject to change without notice to you. No

information contained in this whitepaper is or should be interpreted by you as a legal representation,

express or implied warranty, agreement, or commitment by AT&T or any of the authors concerning (1)

any information or subjects contained in or referenced by this whitepaper, or (2) the furnishing of any

products or services by AT&T to you, or (3) the purchase of any products or services by AT&T from you,

or (4) any other topic or subject. AT&T may own intellectual property that relates to the information

contained in this whitepaper. Notwithstanding anything in this whitepaper to the contrary, no rights or

licenses in or to this intellectual property are granted, either expressly or impliedly to you. Rights to

AT&T intellectual property may be obtained only by express written agreement with AT&T, signed by

AT&T’s Chief Technology Officer (CTO) or the CTO’s authorized designate.

